keyboard_arrow_down
  • News
  • Research
  • Teaching
  • Team
  • Alumni
  • Publications
  • Publications
  • Resources
  • Join Us!
  • Pictures
  • Contact
  • keyboard_backspace

    PneumoBrowse

    Browse the Streptococcus pneumoniae D39V genome

    PneumoBrowse is accessible at two different servers. This way, nothing will stand in the way of you stalking your favourite gene:

    Leave feedback on PneumoBrowse here
    See a list of implemented updates to PneumoBrowse here
    Consult the PneumoBrowse User Guide here
    Download the annotated GenBank file here


    The accompanying paper (Nucleic Acids Research; here):

    Deep genome annotation of the opportunistic human pathogen Streptococcus pneumoniae D39

    Jelle Slager, Rieza Aprianto and Jan-Willem Veening

    A precise understanding of the genomic organization into transcriptional units and their regulation is essential for our comprehension of opportunistic human pathogens and how they cause disease. Using single-molecule real-time (PacBio) sequencing we unambiguously determined the genome sequence of Streptococcus pneumoniae strain D39 and revealed several inversions previously undetected by short-read sequencing. Significantly, a chromosomal inversion results in antigenic variation of PhtD, an important surface-exposed virulence factor. We generated a new genome annotation using automated tools, followed by manual curation, reflecting the current knowledge in the field. By combining sequence-driven terminator prediction, deep paired-end transcriptome sequencing and enrichment of primary transcripts by Cappable-Seq, we mapped 1015 transcriptional start sites and 748 termination sites. We show that the pneumococcal transcriptional landscape is complex and includes many secondary, antisense and internal promoters. Using this new genomic map, we identified several new small RNAs (sRNAs), RNA switches (including sixteen previously misidentified as sRNAs), and antisense RNAs. In total, we annotated 89 new protein-encoding genes, 34 sRNAs and 165 pseudogenes, bringing the S. pneumoniae D39 repertoire to 2146 genetic elements. We report operon structures and observed that 9% of operons are leaderless. The genome data are accessible in an online resource called PneumoBrowse (https://veeninglab.com/pneumobrowse) providing one of the most complete inventories of a bacterial genome to date. PneumoBrowse will accelerate pneumococcal research and the development of new prevention and treatment strategies.